A little over a hundred years ago, no one on ourthe planet did not know that the universe was expanding. But despite all the troubles and misfortunes that the twentieth century brought to mankind, it is this century that is marked by scientific and technological progress. In an incredibly short period of time, we have learned more about the world and the Universe than ever before. The idea that our universe has been expanding over the past 13.8 billion years was first proposed by the Belgian physicist Georges Lemaitre in 1927. Two years later, the American astronomer Edwin Hubble was able to confirm this hypothesis. He found that each galaxy is moving away from us and the further it is, the faster it happens. Today, there are many ways in which scientists can understand how quickly our universe is expanding in size. Here are just the numbers that researchers get in the measurement process, each time they turn out to be different. But why?
Since its inception, our Universe has been expanding at an ever-increasing rate.
The biggest mystery of the universe
As we know today, there is a close relationship between the distance to a galaxy and how quickly it is receding. So, say, a galaxy at a distance of 1 megaparsec from our planet (one megaparsec approximately equal to 3.3 million light years)moving away at a speed of 70 kilometers per second. And the galaxy that is located a little further, at a distance of two megaparsecs, moves twice as fast (140 km / s).
It is also interesting that today there are two main approaches for determining the age of the Universe, or, scientifically, Hubble constant... The difference between these two groups isin that one set of methods considers relatively close objects in the Universe, and the other - very distant ones. However, no matter what method the scientists use, the results are different each time. It turns out that either we are doing something wrong, or somewhere far away in the Universe, something absolutely unknown is happening.
Based on what's fastest from Earththe most distant galaxies are moving away, scientists have concluded that once all galaxies were at one point - in time this event coincides only with the Big Bang.
In a study recently published on the serverFrom the airxiv.org preprints, astronomers studying nearby galaxies used a clever method to measure the expansion of the universe called surface brightness fluctuations. It's a fancy name, but it includes an idea that's actually intuitive.
Do you want to always be aware of the latest news from the world of science and high technology? Subscribe to our news channel in Telegram so as not to miss anything interesting!
Imagine that you are standing at the edge of the forest, straightin front of the tree. Because you are very close, you only see one tree in your field of vision. But if you step back a little, you will see more trees. And the further you go, the more trees will appear before your eyes. Much the same thing happens with the galaxies that scientists observe with telescopes, but much more complicated.
How do you know the rate of expansion of the Universe?
To get good statistics,astronomers observe galaxies quite close to Earth, about 300 million light years away and closer. However, when observing galaxies, it is necessary to take into account the dust, background galaxies and star clusters that can be seen in the images taken with the telescope.
This is interesting: How will NASA search for dark energy?
The universe, however, is cunning.Since the 1990s, astronomers have seen that very distant exploding stars have always been farther away than simple measurements would indicate. This led them to believe that withthe universe is expanding faster nowthan before, which in turn led to the discovery dark energy - a mysterious force that accelerates the Universal expansion.
To date, scientists estimate the time of the Big Bang that gave birth to the Universe using computer simulations.
As the authors of the scientific work write, when we lookto very distant objects, we see them as they were in the past, when the universe was younger. If the expansion rate of the Universe was then different (say, 12-13.8 billion years ago) than it is now (less than a billion years ago), we can get two different values for the Hubble Constant. Or maybe different parts of the universe are expanding at different rates?
See also: What do scientists know about the age and expansion of the universe?
But if the expansion rate has changed, thenthe age of our universe is not at all what we think (scientists use the expansion rate of the universe to trace its age). This, in turn, means that the universe has a different size, which means the time it takes for something to happen will also be different.
If you follow this line of reasoning, then inin the end, it turns out that the physical processes that took place in the early Universe took place at different times. It is also possible that other processes were involved that affect the expansion rate. In general, there is some kind of mess. "From which it follows that either we do not understand well enough how the universe behaves, or we measure it incorrectly," the authors of the study note.
In any case, the Hubble Constant isthe subject of heated debate in the astronomical community. The new study, however, has added even more questions, so the fight against uncertainty will be long. Someday, of course, our understanding of the cosmos will change. But when that happens, cosmologists will have to look for something else to argue about. What they will definitely do.